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A number of processes in which air is entrained in a flow appear to involve the 
formation of a thin air film between a relatively fast liquid stream and a region of 
slow recirculation. Eventually, the film breaks into bubbles. This study addresses a 
possible mechanism causing this process. The linear stability of a vertical film of a 
viscous gas bounded by liquid in uniform motion on one side, and by liquid at  rest 
on the other side, is studied. Instabilities are found that, depending on the parameter 
values of the undisturbed flow, are controlled by two basic mechanisms. One is due 
to the velocity jump across the film and can be related to the usual Kelvin-Helmholtz 
instability. The second one is controlled by the viscosity jump across the air-liquid 
interfaces. The relation between the remainder of the discrete spectrum and the 
spectrum of other parallel shear flows bounded by solid or free surfaces is also 
discussed. 

1. Introduction 
The entrainment of air in a flow is an important process very frequently 

encountered. The ecological balance of water bodies, from small lakes to entire 
oceans, is critically dependent on the amount of dissolved oxygen. Aeration is a 
standard technique of water treatment. Furthermore, the formation and detachment 
of bubbles is an inherently noisy process to  which much of the oceanic ambient noise 
over a large frequency range from hundreds of Hz to many tens of kHz can be 
ascribed. In  spite of this widespread occurrence, not much seems to be known about 
the basic mechanisms by which entrainment takes place. In a paper devoted to  air 
entrainment in a wave breaking in the spilling mode, Longuet-Higgins & Turner 
(1974) mention the ‘over-running of air by the advancing front’ of water and the 
‘ self-aeration ’ of thin, highly turbulent flows which develops when the turbulent 
boundary layer on the bottom reaches the surface. While certainly correct and 
adequate for the purposes of their study, these statements are rather vague as to  the 
precise nature of the process. A literature search has not produced much more 
detailed information than this. I n  the present paper we wish to investigate 
theoretically a possible mechanism by which air can be entrained in flows. Although 
not the only one, this mechanism appears to  be of sufficiently widespread occurrence 
to warrant its investigation. 

A consideration of several examples of entraining flows suggests that a possible 
mechanism involves the development and instability of a thin air film a t  the 
boundary between two liquid currents. The clearest example of this process is offered 
by a jet falling into a liquid pool. In  a high-viscosity liquid an air film surrounding 
the jet can be clearly discerned for several diameters below the free surface (Lin & 
Donnelly 1966). The film develops a wavy structure, the amplitude of which 
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increases with depth, until it  breaks up into bubbles. In  a low-viscosity liquid such 
as water the film is more unstable and therefore extends for a shorter distance, but 
a similar process takes place (figure 1 ,  courtesy of Professor J.  Duncan). (In a case 
such as this one surface waves on the falling jet, due e.g. to turbulence, may also 
develop. Since the air film is very thin, when these waves reach the surfacc of the 
receiving liquid they may close and break off the air film. A similar process may occur 
in the case of air entrainment by a wave breaking in a plunging mode or by large 
splashes. ) 

A detailed flow visualization of air entrainment in a small-scale spilling breaking 
wave (Banner & Cat0 1988), also shows an air film separating the liquid at  the face 
of the wave from the toppling mass forming the recirculating ‘toe ’ of the breaker. A 
high-speed movie taken from above shows the film to become unstable and to give 
rise to bubbles that remain entrained in the recirculating liquid mass falling down the 
face of the wave. This mechanism is possibly similar to the trapping of air occurring 
in the roller zone of a hydraulic jump (Rajaratnam 1967). 

As a third example one may cite the formation of an air film in thc form of a ‘ skirt ’ 
at  the rim of a gas bubble rising in a liquid (Guthrie & Bradshaw 1969; Hnat & 
Buckmaster 1976). This film separates the incoming liquid stream from the 
recirculating flow in the bubble’s wake. If the viscosity of the liquid is high, the skirt 
is well developed and stable. I ts  thickness has been measured (Guthrie & Bradshaw 
1969) and has been found to be of several tens of pm. A similarly stable skirt 
accompanying spherical-cap bubbles in water is not seen, but even a casual 
observation shows that small gas bubbles are entrained in the wake of a large 
spherical-cap bubble, and it is conceivable that they are due, a t  least in part, to the 
rapid formation and unstable breakup of a short skirt similar to that found in the 
high-viscosity case. 

In all the above examples the gas film appears a t  the boundary between a 
relatively fast liquid stream and a slower flow, typically of a recirculating nature if 
viewed in a suitable frame. A rather steep velocity change therefore occurs across the 
thin air film, and one may suspect that the basic mechanism that gives rise to the 
standard Kelvin-Helmholtz instability could also provide an explanation for the 
breakup of the film. This was our expectation a t  the beginning of the study. As i t  
turned out, we have indeed found an instability that can be related to the 
Kelvin-Helmholtz one. However, this mechanism may be much less important than 
the instability associated with the jump in viscosity at the interfaces. The possibility 
of such an instability was first pointed out in the long-wavelength approximation by 
Yih (1967), who considered plane Couette-Poiseuille flow of two superposed fluid 
layers between horizontal walls. More recently, Hooper & Boyd (1983, 1987) 
extended that work to arbitrary wavelengths for the Couette case, and Hinch (1984) 
proposed a physical explanation of thc underlying mechanism. Further extensions 
have been provided by Renardy (1987), who studied a three-layer vertical Poiseuille 
flow bounded by solid surfaces, and by Joseph, Renardy & Renardy (1984) and 
Renardy & Joseph ( 1985), for configurations with cylindrical symmetry. Since none 
of these analyses is adaptable to our case, we also develop an explicit treatment of 
this instability suitable for our situation. 

As an attempt to describe the process of air entrainment, this paper is certainly 
incomplete. In  the first place, we ignore the process by which the film is formed. 
Secondly, the thickness of the film enters as an adjustable parameter in our analysis. 
Conceivably, an understanding of the mechanism of formation of the film would also 
predict this quantity. Thirdly, viscous effects are very incompletely accounted for, 
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FIGURE 1. Water jet falling into a pool of water at  rest. The camera looks a t  the free surface slightly 
from below. A short film of air envelops the jet around its entry point into the receiving liquid, 
clearly visible at  the top of the figure. The diameter of the jet is slightly less than 1 cm and its 
velocity about 0.7 m/s. (Courtesy of Professor J. Duncan.) 
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FIGURE 2. Flow configuration assumed for the air film model. A plane film of thickness 2d Beparates 
two half-spaces occupied by a liquid. The liquid to  the left of the film is in uniform downward 
motion with velocity W,. On the other side the liquid is at rest. Gravity is directed downward. The 
viscosity of the liquid is neglected. 

and nonlinear effects are not included. In  spite of these shortcomings, the following 
analysis appears to  be a necessary step towards an understanding of the process. 

2. The unperturbed state 
The unperturbed state we consider consists of a thin, plane air film separating two 

half-spaces occupied by a liquid (figure 2). Gravity is acting downward in a direction 
parallel to the undisturbed film surfaces. The liquid to  the left of the film has an 
undisturbed uniform downward velocity of modulus W,, while the liquid to its right 
is quiescent in the unperturbed state. This stipulation defines our frame of reference, 
which is appropriate for the case of a large-diameter jet plunging in a liquid or of 
skirt formation around a large-diameter bubble. In these examples curvature effects 
due to  axial symmetry can be disregarded in view of the thinness of the film. The 
parameter expressing the acceleration of gravity may be adjusted to incorporate the 
effect of pressure gradients of a different origin in the direction parallel to the film. 

Since the air film is very thin and its Reynolds number relatively small, we take 
the air to be an incompressible, viscous fluid. The viscosity of the liquid will, 
however, be ignored. This approximation is rendered necessary by the fact that the 
system is taken of infinite extent in the vertical direction and with no boundaries in 
the horizontal one. As far as the liquid is concerned, the effect of this viscous 
boundary layer is to distort the velocity distribution from the uniform value W,, 
which is assumed in the model, to  a non-uniform one. If W,  is the vertical velocity at 
the interface, we can estimate its deviation from W, by balancing the tangential 
stresses a t  the interface, 
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where p, and pa denote the liquid and air viscosities, 2d is the thickness of the air film, 
and 8, is the thickness of the viscous boundary layer in the liquid. From this relation 
we find 

If we use the estimate 8, - (zv,/W,)i for the thickness of the viscous boundary layer 
a t  a depth z in a liquid with kinematic viscosity v(, we find, for a 1 m/s water jet a t  
a depth of 1 cm below the free surface, 8, x 100 pm, which is comparable with the 
thickness of the air film. Since p, 4 p,, the viscous correction to the liquid velocity 
profile is thus seen to be very small and therefore the consequences of our 
approximation should be minor. Further comments on this point will be given in the 
last section. 

The neglect of the liquid viscosity forces us to drop some of the interface 
conditions. Continuity of normal stresses and velocities across the interface can be 
imposed on both the liquid and gas sides. No other conditions can be imposed on the 
liquid side, while on the gas side we can in principle use continuity of tangential 
velocity or of tangential stresses. The previous argument shows that the latter 
alternative would be incompatible with the neglect of viscous effects in the liquid, 
and therefore we shall impose continuity of the tangential velocity. These boundary 
conditions are used on both the unperturbed and the perturbed states. 

It is readily verified that the velocity distribution 

for the air flow in the film satisfies the conditions W( - d )  = - W,, W ( d )  = 0. Here e3 
is the unit vector in the direction of the z-axis, which is taken vertically upward. The 
x-axis points toward the body of liquid at rest, with the origin in the centre of the 
film (figure 2). Furthermore, pb and pa denote the liquid and the air densities and g 
is the acceleration due to gravity. The pressure distribution in the film is given by 

p = p, -p ,gz ,  (4) 

where P, is the pressure at z = 0. The pressure gradient in the gas given by this 
equation is constant and is therefore able to balance the hydrostatic pressure in the 
liquid. The base flow ( 3 )  is given by the superposition of a Poiseuille component, 
which is sustained by the pressure gradient due to gravity, and of a Couette 
component, which satisfies continuity of velocity a t  the air-liquid interfaces. The 
total transport of air in the film is 

This model for the unperturbed state has been used by Guthrie & Bradshaw (1969) 
in their study of bubble skirts. 

The film thickness appears as a free parameter in this base state. In  the stability 
analysis that  follows, we shall present results for different values of this quantity. 
However, it may be noted that two special values exist, one corresponding to no 
stress being exerted on the right-hand liquid surface, and one corresponding to  no 
mass being transported in the film. These two values are d = d,  = ha W,/2(pl-p,) g]:  
and d = d,  = d 3 d ,  respectively. When d < d, the air flows downward only. When 
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d, < d < d,, a region of upward flow is also present, but the net volume flow is still 
downward. Finally, for d ,  < d ,  there is a net volume flow upward, a situation of no 
interest for the study of air entrainment. For water and air a t  20 "C, pa = 
1.81 x lop4 g cmpl spl, pa = 1.205 x lop3 g ~ r n - ~ ,  pI = 0.998 g cmp3, and, with Wf = 
100 cm spl, we find for d ,  and d ,  the values 30.4 pm and 52.5 pm, respectively. This 
order of magnitude is in good agreement with the measurements of Guthrie & 
Bradshaw (1969). 

3. Linear stability analysis : governing equations 
It is convenient to pass to dimensionless quantities and for this purpose we choose 

d ,  Wf,pad2/,ua, and pa W,/d ,  as characteristic length, velocity, time and pressure, 
respectively. The choice of the last two scales is dictated by the importance of 
viscosity for the dynamics of the film; indeed, the Reynolds number of the air flow, 

P a  W , d  K e  = -, 
P a  

has values of order one (e.g. for Wf = 1 m s-l and d = 30 pm, Be = 1.99). The base 
velocity profile rewritten in dimensionless form is 

(7 )  

where the parameter a. which may be regarded as a measure of the relative 
importance of the Poiseuille to the Coucttc components of the base flow, is given by 

W = -  a ( x 2 -  1 )  + i ( x -  l ) ,  

The special values a = and a = correspond to zero stress a t  the right-hand 
interface and to  zero net mass transport in the film, respectively. Two other non- 
dimensional parameters enter the problem : the density ratio 

c = -  P a  

Pf 

which equals 1.207 x for air-water a t  20 "C; and the capillary number 

P a  W,  Ca = -, 
U 

(9) 

This quantity is a measure of the ratio of viscous to capillary effects. Typical values 
are of the order of For example, again for water-air a t  20 "C, with W, = 1 m/s, 
Ca sz 2.5 x lop4. From now on all quantities will be dimensionless, but no special 
notation will be used. 

Recently Hesla, Pranckh & Preziosi (1986) have extended Squire's theorem on the 
stability of parallel flows to the case of more than one layer of immiscible fluids. This 
result would be directly applicable to the problem investigated here only if the 
viscosity of the liquid had been retained. However, insofar as the present model is 
intended as an approximation to the fully viscous situation, we feel justified in 
considering only two-dimensional disturbances. 
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Indices / and r will be used to denote the regions occupied by the liquid to the left 
and to the right of the air film, x < - 1 and x > 1 ,  respectively. Thc perturbed 
interfaces are described by the equations 

The continuity equation, 

and the momentum equations, 
V . U e , r  = 0, 

= -EVpr, au, 
at 

are the linearized disturbance equations in the liquid. In the air, we have the 
continuity equation V - u  = 0 and the momentum equation, 

From the continuity of normal stresses we obtain 

(18) 
and from the kinematic conditions 

h ( z , t )  = R e  
at 

(20) aTr - ( z ,  t )  = Re u( 1,  z ,  t ) .  
at 

Finally, as 1x1 tends to  infinity, we require the disturbances to vanish. 

have coefficients independent of z and t we can look for solutions of the form 
Since the problem is clearly linear and homogeneous and the differential equations 

u(x, z ,  t )  = d(x) est+ike, (21) 

and similarly for w, p and The introduction of the normal modes allows us to 
solve the problem in the two regions occupied by the liquid in terms of film 
quantities. Simple manipulations lead to the following equations for i ie,r: 

d;,r-k2iie,r = 0, (22) 
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where the prime denotes differentiation with rcspcct to x. By imposing that the 
amplitudes vanish at  infinity, we find 

(23 ) 
* - A  e + k X  A 

U/.r - (,r w/,r = *i$/,r? 

for the velocity fields and 

for the pressure fields. The integration constants A/ ,r  are to  be determined by 
matching the velocity profiles in the liquid and in the air. 

It is now possible to derive a closed system of equations and boundary conditions 
for the amplitudes of the normal modes in the air film. Upon introduction of the 
normal modes in the continuity and momentum equations one obtains 

Zi’+ik?j, = 0, (25) 

(26) 

6”-(s+iWRek+k2)Zi)-ReWZi = ik$. (27) 

Zi” - (s + i W Re k + k2) Zi = $’ , 

The boundary conditions (16) become 

Z i p , r (  f 1) = &( T 1). 

ti( f 1) = +iZi( f 1)- W’( f i ) i f , r ,  

(28) 

Together with (23) and (24), these enable us to rewrite (17)-(20) as 

(29 1 

s 
$(-1) = --Zi(-1)+2[4’(-1)-iW‘(-1)klj~]-Ca-’k2~,,  ek (30) 

s 
$(l)  = -6(1)+2[2;’(1)-iW’(l) ek ki,]+C!ap’ k 2 &  (31) 

Re Zi( - 1) = &jC, 

BeZi(1) = sir, 

Z=s-iRek. 
where we have defined 

The same problem can also be phrased in terms of $, the stream function of the 

(35) 

disturbance velocity, which leads to a form useful for numerical work. If we let 

$(x, z ,  t )  = $(x) estfikz, 

then = ik$, ?j, = -&, (36) 

and (27) gives 

$ = 1 [ $ ” ’ - ( s + i W R e k + k 2 ) $ ‘ + i W ’ R e k $ ] .  k (37) 

Upon substitution of (35) and (36) into (26), we obtain the Orr-Sommerfeld equation 

$”” - ( s  + i WRe k + 2k2) &” + [i W”Re k + (s + i WRe k + k2) k2] $ = 0. (38) 
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The appropriate boundary conditions are obtained from (29)-(31), by using (32) 
and (33), and are 

$&'( - 1) = k[s"+ iW'( - 1) Re] $( - l ) ,  

s"$'"( - 1) = k { ( l  -e-l) ?-+3k2s"- [Ca-' k-iW'( - l ) ]  Re k2}&(  - l) ,  

(39) 

(41) 

s$'(l) = -k[s-iW'(l)Re]&(l), (40) 

s@'(l) = -k{(l-e-')s2+3k2s-[Ca-lk+iW'(1)]Re k2)$(l). (42) 

g f i p  = iRek&(-i) ,  sir = iRe&i).  (43) 

Once the problem for 
can be calculated from (32) and (33) which, in terms of $, are 

has been solved, the amplitude ofAthe surface displacements 

4. Long-wave asymptotics 
The perturbation problem formulated in the previous section cannot be solved 

analytically in closed form. Before carrying out a numerical integration, i t  is useful 
to study the asymptotic behaviour of the dispersion relation s = s ( k )  in the limits of 
wavelengths large and small compared with the thickness of the air film. These 
results enable us to identify and classify the eigenvalues of the system and to gain 
some insight into the physical mechanisms of the instability. Moreover, the 
approximate results for long wavelengths have been used as initial guesses for the 
iterative process upon which the numerical method of solution is based. Here we 
discuss the long-wavelength limit. The next section is devoted to  the analysis of the 
short-wavelength case. 

The details of the asymptotic analysis for k + 0 are rather straightforward and can 
be found in the Appendix. Here we describe some results and note that the 
calculations are considerably simplified by dealing with (25)-(27) directly, rather 
than by using the stream-function formulation. If the latter course were taken, the 
determination of s to the leading order would require the solution of the problem for 
4 to the second order. 

Upon writing 
~ ( k )  = so+slk+s2k2+ ..., (44) 

@)=-I 4n 2 x 2 , n =  1,2 ,.... (45) 

we find in the Appendix that so can either vanish or take the infinity of values 

These higher modes are heavily damped and are not expected to lead to an unstable 
behaviour. They will be briefly considered later. For the present purposes the most 
interesting modes are those for which so vanishes. To study this case in more detail 
we let 

s = k(so+ks,+ ...), (46) 

and find three different solutions, 

]Re k2 + O ( k 3 ) .  (48) 
6 + i201 Re do) = i(i-2a)Rek+(l-16a2) -+ E: (1 + 16a2)Re-i8ae 

The mode s(+) is evidently unstable and it is easy to see that it is associated to an 
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instability of the Kelvin-Helmholtz type, as expected. Indeed, the standard result 
for the growth rate of this instability (Lamb 1932; Chandrasekhar 1961) is, in our 
dimensionless units, 

and therefore, to leading order in k, coincides with (47) up to the small correction 
8aslRe which is due to the effect of the buoyancy of the film. This interpretation is 
strengthened by the fact that the displacements of the left- and right-hand interfaces 
are equal, to the leading order in k, so that the air film behaves approximat.ely as a 
single surface of discontinuity, although with a complicated internal structure. Note 
that, in (as), the surface tension contribution of the standard Kelvin-Helmholt'z 
result has been multiplied by two to properly account for the two inhrfaces 
bounding the air film. 

If, in the study of the stability characteristics of a parallel shear flow, a rigid 
boundary is replaced with a free surface or an interface, two new surface modes 
appear in addition to  the shear modes that were present in the original flow. In 
general the surface modes are waves travelling in opposite directions and they are 
less stable than the shear modes. In  the configuration that we are considering here 
there are two interfaces, and hence four surface modes. As will be clearer from a 
consideration of the short-wavelength limit, two of them are s(i) while the other two 
are do) and d'). It may be noted that a mode similar to the root do) is found in the 
study of the stability of a film flowing down an inclined plane (Benjamin 1957 ; Yih 
1963; Smith 1990). In that case, as in the present one, the real part of the eigenvalue 
is of order k2, and can be positive or negative depending on the inclination of the 
plane and the Reynolds number. Here the sign of the real part of do) depends on the 
parameter a: being positive for a > a. An eigenvalue similar to dl) is also found in the 
problem studied by Yih (1963), after the correction of what appears to be an 
algebraic error.? It may be concluded that the modes corresponding to do) and dl) 
are characteristic of the stability of parallel flows with free boundaries. 

The'modcs (45) with n greater than 1 are shear modes, closely related to those in 
the spectrum of parallel flows between solid boundaries. We ref& to Birikh, Gcrshuni 
& Zhukhovitskii (1966) for a study of the cigenvalues and the eigenfunctions of such 
flows in the long-wavelength limit a t  low Reynolds numbers. To the leading order in 
k, perturbations for which the stream function is alternatively cven and odd arc 
found. The eigenvalues associated wit.h the even eigenfunctions are given by (45) 
with n = 2 , 4 ,  6 , .  . . . They coincide with those of our syst,em because to this order in 
k the free-surface displacements vanish when n is cven (see the Appendix). The 
eigenvalues associated with the odd eigenfunctions arc determined by 

(-S)tcot (-S)i = 1 .  (50) 

The first few solut,ions of this equation are S'" = -20.191, L ! ( ~ )  = -59.680, k S 5 )  =- 

- 118.90 ... . They arc somewhat smaller in modulus than thc corresponding 
eigcnvalues of our system, sl;j) = -22.207, ah5) = -61.685, sr)  = - 120.90 ... , but t,hc 

t In section VIII, where he compares the spectrum of' a plane Poiseuille flow with the one of a 
flow down an inclined plane, he considers the long-wave limit for the free-surface flow. Imposing 
the boundary condition B2$'(0) - $"'(O) = 0 on $ = A +By+ ('eliu + De-'iu. he erroneously deduces 
B = -4pD instead of B = 0. The correct eigenrondition is cosh = 0. the roots of which are 

with 8;". 

/32, = -+(nm)2, n = I .  3.5 Since /P is the growth rate, the first of these eigenvalues coincides 
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FIGURE 3. Flow configurations for the viscous instability model. The left half-space is occupied by 
an inviscid liquid at rest. The viscous fluid to the right of the interface is in linear shearing motion 
with shear rate W'.  ( a )  Unbounded case; ( b )  bounded case: a vertical wall is placed at a distance 
2d from t h e  interface. 

difference S("-2'-sr) tends to zero as n+m. This difference may be explained by 
observing that, as shown in the Appendix, when n is odd the displacements of the two 
interfaces are opposite. This circumstance causes a longitudinal flow in the film with 
a viscous dissipation larger than in the case of rigid boundaries. Since the interface 
displacement is proportional to nP3 while the velocity disturbance is proportional to 
n-', as n increases, this difTerence tends to disappear and (50) becomes a closer and 
closer approximation to the eigenvalues of the present problem. 

5. Viscous instability 
A t  wavelengths very short compared with the film thickness, one expects the 

disturbances to affeci only a thin region around each interface. In  this wavclength 
range the two interfaces should become essentially uncoupled and each one of them 
should behave very similarly to the interface of a model configuration in which a 
single free surface separates a viscous from an inviscid fluid. The spectrum of the 
complete problem is therefore expected to reduce to  the combination of two such 
spectra. These considerations lead us to the study of the stability of a two- 
dimensional shear flow with an interface across which viscosity is discontinuous. 
Since the results of the treatment of this problem given by Hooper & Boyd (1983) 
cannot be readily adapted to the case of present concern in which one of the two 
fluids is inviscid, we develop here the analysis ab initio. 

Consider a half-space occupied by an inviscid fluid of density pL, moving with 
uniform velocity U, = Woe3. The other half-space contains a second fluid of density 
pa and viscosity pa. Its  unperturbed velocity distribution is U, = (W, + W ' s )  e3 (figure 
3a) .  Since the condition of continuity of the tangential stresses cannot be imposed at 
a viscous-inviscid interface, here the shear rate W' is an independent parameter of 
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the problem. It is in this feature that the present situation differs from that studied 
by Hooper & Boyd, for which the shear rate was dictated by the continuity of 
tangential stresses. 

In  addition to the previous configuration, we shall also study the case in which the 
viscous fluid has a finite thickness 2d and is bounded by a rigid wall. In order to  
maintain the linear velocity distribution in the film, the wall has an upward 
(dimensional) velocity given by W0+2W’d (figure 3 b ) .  In this analysis, we have been 
motivated by the following considerations. If the wavelength is very large, since the 
air film is taken to be incompressible, both interfaces must undergo non-zero 
displacements. At moderate or short wavelengths, however, in view of the very large 
density difference between the two fluids, one expects the high inertia of the liquid 
to strongly limit the participation of one interface to a perturbation mode 
corresponding to the other one. Thus, the substitution of the ‘passive’ interface with 
a solid boundary should change but little the system’s response. Indeed, it will be 
seen that endowing the viscous fluid with a finite extent greatly extends the degree 
to which this simpler model simulates the complete problem of concern in the present 
paper. 

It is readily shown that the only effect of the velocity W, is to add the purely 
imaginary term iW, k to  the eigenvalues. We shall therefore assume W, = 0 in the 
following, which is equivalent to performing a Galilean transformation. Furthermore, 
on the basis of symmetry considerations, one expects the real part of the growth rate 
s not to depend on the sign of W’. Indeed, it can be proven that the complex 
conjugate of any eigenvalue corresponding to a shear rate W’ is an eigenvalue of the 
reversed-flow configuration with the shear rate - W’. This fact permits us  to consider 
only positive values of W’. 

Intrinsic scales for the model problem are the lengthscale (palpa W’);, the velocity 
scale (pa W‘/pa)i  and the timescale W’-l. I n  addition, for the bounded configuration, 
there are a characteristic length d,  velocity W’d, and time pad2/pa. The former set of 
units is the most natural one. The dimensionless formulation of the unbounded 
problem that follows from this choice depends only on one parameter related to the 
surface tension, whereas the bounded problem depends also on the dimensionless 
distance of the wall from the interface. When this distance tends to infinity, one 
recovers the unbounded case as a limit of the bounded one. The study of the stability 
characteristics of the interface as a function of the surface tension and distance of the 
wall for a fixed shear rate at the interface is, thus, quite straightforward. In order to 
explain the stability characteristics of the air film, however, we are more interested 
in the dependence of the growth rate on the interfacial shear rate for a given surface 
tension and a given thickness of the region occupied by the viscous fluid. In  view of 
this objective, it is more convenient to  use the second set of units. It is then found 
that both the finite and infinite problems are governed by two parameters, a 
Reynolds number 

pa W ’ d 2  
Re, = -, 

Pa 

which may be interpreted as a measure of the magnitude of the shear rate, and the 
parameter 

which is the ratio of the Reynolds number Rev to the capillary number Ca, = 
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pa. W‘dla. Dimensionless quantities will be used henceforth, although no special 
notation will be used. 

As for the original problem, we introduce a st;eam function $ to describe the flow 
in the viscous fluid. The complex amplitude $ of any normal mode satisfies the 
Orr-Sommerfeld equation which, upon scaling and substitution of the unperturbed 
velocity profile, may be written as 

A t  the interface the same boundary conditions as a t  the left surface of the film apply. 
Making the change of variable x +  x+ 1 ,  from (39) and (41)  we obtain 

s6’(0) = ~ [ s + i ~ e , l  $(o) ,  (52) 
s@(o) = k[(i  - s-1) s2+ 3 ~ 2 s  + iRe, k2 - r, k31 $(o).  (53) 

The other two boundary conditions (40) and (42) are replaced by imposing that the 
disturbances tend to zero as x tends to co in the unbounded case, whereas in the finite 
case the disturbance velocity must vanish a t  the wall, that is 

The derivation of the eigencondition follows the same steps as in the cases treated 
by Hooper & Boyd; however, the algebra is much simpler. The solutions of (51) are 
expressed in terms of the Airy functions of complex arguments 

A,(z) = Ai , j= 1,2, 

where 8, = 
This condition restricts the set of acceptable solutions to the form 

and 8, = gx. In the unbounded case the disturbances vanish at infinity. 

where c1 and c2 are integration constants. By imposing the boundary conditions (52) 
and (53), the following linear system of equations in cl, c2 is obtained : 

4k2 scl + iRe,(2k2 c1 - Jc,) = 0, 

[ ( 1 - ~ - ~ ) ~ ~ + 4 k ~ s + i R e ~ k ~ - ~ ~ k ~ ]  (2k2cl-Jc,)-2kA~(0)sc, = 0. 

For the system to possess non-trivial solutions the determinant must vanish, which 
leads to the dispersion relation 

[(l -6-l) s2 + 2 k 2 s - r ,  k3]  J+ (29+ iRe,) kA’,(O) = 0, (58)  

where J = k Iom e-kVAl(y) dy. (59) 

For the bounded configuration, we impose conditions (54) and (55) on the general 
solution of (51), obtaining 

J x  J s  
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Wavenumber 

FIQURE 4. Effect of surface tension on the viscous instability. Dimensionless growth rate Re(s) 
us. the dimensionless wavenumber k for R P ~  = 2. X o  surface tension, f, = 0:  -, bounded 
configuration: unbounded configuration. f, = 1000: ---. bounded configuration ; . . ' . . , 
unbounded configuration. 

where c3 and c4 are integration constants. Upon substitution into the interface 
conditions (52) and (53), we find a linear system in these quantities: 

(s + i Re,)( Jsl c3 +Jsz cq) + s(J,, c3 + .Icz cq) = 0, 

[(l - e - ' ) s2+3k2s+ iRevk2- - ,k3 ]  (J,,c3+J,,c4) 

+k2.s(Jclc3+JczCq)-slA;(0)CQ+A;(O) c4] = 0, 
where 

with j = 1, 2. This system has non-trivial solutions if and only if 

[( 1 - € - I )  s2 + 2k2s- r, k3](J,, Jcl -Jsl J,,) 

+~[A;(O)(J~~+J,~)-A;(O)(J~,+JC,)~+~RP, [A;(O)Js,--A;(O)Js,] = 0, (63) 

which is the dispersion relation for the bounded case. 
For the purpose of shedding light on the stability of the air film we are interested 

only in the first modes of these model problems, which are associated with the motion 
of the free surface. To obtain the results which follow, the dispersion rclations have 
bcen solved numerically by means of the Newton-Raphson proccdurc. For the 
evaluation of the Airy functions and their derivatives, use has bcen made of the 
algorithm developed by Schulten, Anderson & Gordon (1979). 

Figure 4 shows the growth rate Re (s) of the unstable mode versus thc wavenumber 
for the cases e = 1.207 x lop3, Re, = 2, r, = 0 and 1000 both for the bounded and 
unbounded configurations. When surface tension is neglected (r, = 0. continuous 
and dash-and-dot lines), the interface is unstable for all wavelengths, with the 
growth rate a monotonic increasing function of the wavenumber. The rigid boundary 
(continuous line) has a substantial stabilizing effect on long-wavelength disturbances, 
but acts as a destabilizing factor in the region 0.01 < k < 1, approximately. This fact 
will be seen in the next section to play a major role in the air film instability studied 
in the present paper. The dashed and the dotted lines are for r, = 1000, for bounded 
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FIGURE 5 .  Dimensionless growth rate Re(s) DS. the  dimensionless wavenumber k for the  two surface 
modes of the viscous instability for r, = 1000, Re, = 0,0.5,1.0,1.5,2.0. ( a )  Bounded configuration; 
(6) unbounded configuration. -, Unstable modes; . . . . ., stable modes. For Re, = 0 (.-.-.) the  
real parts of the two modes coincide. Unstable modes become more unstable with increasing Re,, 
and conversely for the stable modes. 

and unbounded regions, respectively. As expected, surface tension stabilizes short 
wavelengths. Of greater significance, however, is that  the effect of surface tension 
bcgins to be important precisely for wavenumbers k - 0.01. Therefore the maximum 
for the bounded case (dashed line) is larger than that for the unbounded case (dotted 
line). This feature is present over the entire range 100 < r, < lo4 that  we have 
explored. 

There is an intrinsic viscous lengthscale of the perturbation problem which appears 
in the argument of the Airy functions, 

In the example of figure 4, this quantity becomes of order one for k - 1. Predictably, 
for wavelengths in this range or shorter, the bounded and unbounded results are 
close. 

In  the next figure we show the effect of Re, on the growth rate of the first 
(continuous lines) and second (dotted lines) mode, again for r, = 1000. Figure 5 ( a )  
is for the bounded case and figure 5 ( b )  is for the unbounded case. The maximum is 
in all cases more pronounced for the bounded configuration and increases with the 
Reynolds number Re,. Thc second mode is instead stabilized by an  increase in the 
Reynolds number. For large k the growth rates for the bounded and unbounded cases 
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FIGURE 6. Dimensionless growth rate Re(s) 11s. dimensionless wavenumber k for the four surface 
modes of the air film problem. ~. st+); . . . . . . ,  do) .  . . ~. , s-). , ~~~ , dl). Re = 1, Ca = ( a )  a = 
fi. ( b )  a = f ;  ( c )  a = 3 4 '  
1 .  

tend to coincide, and decrease proportionally to k2, which seems to be at variance 
with a statement of Hinch's (1984). 

6. Results 
We now return to the complete problem posed in $ 3  and discuss several examples 

on the basis of the models of the previous two sections. The numerical results to be 
described have been obtained from the stream-function formulation (38)-(42) by 
means of a standard shooting technique (see e.g. Keller 1968; Drazin & Reid 1981). 

The present problem is characterized by three dimensionless parameters, the 
Reynolds number, the capillary number, and a. Within the context of the model 



0.1 

335 

I ' * ' ' ' " ' I  ' ' """I ' ' """- 
(4 - - 

L ' ' ' ' ' . " I  ' ' ' ""'I ' ' """I ' ' " ' "7 

c ' " " " ' I  ' " "" ' I  ' ' ~ " " ' 1  ' " " "q  

0.1 L n 

8' 

<' , , , , , , , 
0.001 0.01 0.1 1 10 

Wavenumber 

, , , , , , , ,I , , , , , , , -0.2 ' ' ' . - . - - I  ' - 

FIQURE 7 .  As in figure 6, with Re = 10, Ca = 

assumed in this study, for a given gas-liquid combination, only the entrainment 
velocity W, and film thickness 2d can be prescribed arbitrarily. Furthermore, as has 
already been remarked, i t  is very likely that a relation exists between these two 
quantities in the actual physical process, so that in an experiment only the 
entrainment velocity could be selected arbitrarily. However, in view of the 
incomplete understanding of the process that we have a t  present, we shall discuss our 
results treating Re, Ca, and a as independent quantities. I n  this way, a better insight 
into the mechanisms underlying the instability can be gained. 

Figures 6-8 show the growth rate, Re (s), of the four surface modes s(+) (continuous 
line), s(-) (dash-and-dot line), do) (dotted line), and s(l) (dashed line) for several 
different combinations of the parameters Re, Ca, and a chosen so as to span a region 
of physical interest in parameter space. For some of these cases, figure 9 shows the 
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FIGURE 8. As in figure 6, with Re = 1, Ca = 

phase velocity -1m ( s ) / k ,  which is however of lesser interest for the study of the 
instability. Further results of this type can be found in Lezzi (1990). In the graphs 
the wavenumber ranges between and 10. The density ratio E is held fixed, equal 
to 1.207 x lop3, which is the appropriate value for air-water a t  20 "C. For the 
parameter a,  which may be viewed as a dimensionless imposed pressure gradient 
opposing the entrainment process, we consider the values i, corresponding to zero net 
mass transport in the film, a, corresponding to the film thickness d, for which no 
stress is exerted on the right-hand liquid surface, and A, corresponding to  a film 
thickness equal to HI. For the air-water case at  20 O C ,  when W, ranges between 0.1 
and 2 m s-l, the Reynolds number varies between 0.06 and 5.7 for 01 = a, while Ca 
increases from 2.5 x lop5 to  5 x lop4. Therefore, we consider the values lo-', 1,  and 10 
for the Reynolds number and the values lop4 and lop3 for the capillary number. 
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FIGURE 9. Dimensionless phase velocity us. dimensionless wavenumber k for the four surface 
modes of the air film problem for the cases of figure 6. 

The growth rate exhibits a striking variety of behaviours and a clear sensitivity to 
the parameters a and Re. For all values of a and Ca, an increase in the Reynolds 
number greatly enhances the instability. For the least-stable mode d+), for given Re 
and Ca, an increase in a is destabilizing, while, for all modes, a decrease in Ca has a 
stabilizing influence. Since the instability is driven by the downward-moving liquid 
on the left of the film, and is inhibited by viscosity (all the more effective the thinner 
the film) and surface tension, qualitatively these trends are as expected. For a fuller 
understanding of the results, however, it is useful to compare them with those of the 
preceding two sections. 

For the purposes of the following discussion, it is convenient to divide the range 
of wavenumbers in three different regions. We consider a long-wavelength region, 
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where k < lop2, corresponding to wavelengths a t  least two orders of magnitude 
longer than the film thickness. Here, the Kelvin-Helmholtz instability plays an 
important role. Wavelengths of order of the film thickness or smaller form another 
region corresponding to the wavenumber range 1 < k. Here, the viscous instability 
mechanism for unbounded fluids is important. I n  the intermediate interval of 
wavenumbers, which is the most important since it is here that the eigenvalues attain 
their maximum in most cases, the dominant physical process seems to be the viscous 
instability as modified by the presence of a boundary. 

6.1. Kelvin-Helmholtz instability 

From the asymptotic analysis of $4, it  is known that the modes s(+) tend toward the 
two modes of the Kelvin-Helmholtz instability a t  long wavelengths. Although we 
expected the Kelvin-Helmholtz model to be a good approximation for the film down 
to wavelengths about an order of magnitude longer than the film thickness, the 
numerical solutions show that its domain of validity is substantially smaller. 
Equation (49) is found to  approximate the curves s(*) within 10% in the long- 
wavelength region previously defined, i.e. for k < 

The two eigenvalues sf<'I: given by (49) are purely imaginary for k greater than a 
critical wavenumber k, given by aRe Cals ,  whereas the absolute value of the real 
part attains its maximum a t  k, = Qk,. Furthermore, the Kelvin-Helmholtz 
eigenvalues do no depend on the parameter 01. 

Figure 10 (a+) shows a detailed comparison between the numerical results s(*) 
(continuous lines) and the long-wavelength approximation (dashed lines). In  figure 
10(a), the value of ReCa, is such that the critical wavenumber for the 
Kelvin-Helmholtz instability, k,, lies in the long-wavelength region. It is seen that 
in this case one can use k, to obtain a reliable estimate of the wavenumber of one 
of the relative maxima of the growth rate for s(+). In general, however, as in this 
example, this value does not necessarily coincide with the most unstable wavelength. 

and lop2, the critical 
wavenumber for the Kelvin-Helmholtz instability has moved to  the intermediate- 
and short-wavelength regions, respectively. I n  these cases it is seen that the 
Kelvin-Helmholtz model looses its validity at wavenumbers much smaller than k, 
and becomes useless, except for one interesting vestige. When k, falls in the 
intermediate region (figure lob), two local small, but sharp dips interrupt the 
smoothness of s(+) and &). These structures occur near the value of k, where the real 
part of sk$ rapidly vanishes. Other than this, it is apparent that the behaviour of the 
curves s(*) is determined by mechanisms quite different from the velocity jump 
across the film. 

6.2. Viscous instability 
As discussed in $5, the viscous instability arises from a viscosity discontinuity and 
is controlled by the shear rate in the viscous fluid. I n  the present problem there are 
two such discontinuities, and therefore we shall compare the results of the complete 
model with two sets of results for the viscous instability. I n  this comparison, care 
must be exerted because of the different velocity units used in the scalings of $53 and 
5. The correspondence that preserves the dimensional shear rate at the left-hand 
interface is readily seen to be 

Re, = WcRe, 

For the cases of figure 1O(b and c ) ,  for which ReCa = 

where 
dW 1 +401 W - - - ( - l ) = -  '- dx 2 .  
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FIGURE 10. Comparison of the growth rates for the modes d*) as given by the complete model 
(-) with the modes a;?, equation (49), of the Kelvin-Helmholtz, long-wavelength app- 
roximation (---). (a )  Re = 0.1, Cu = a = g, k ,  
= 2.07 x lo-'; (c) Re = 10, Ca = a = i, k, = 2.07. k, is the wavenumber at which the 
Kelvin-Helmholtz eigenvalues become purely imaginary. The maximum of S ~ A  occurs for k = Qk,. 

a = i, k, = 2.07 x ( b )  Re = 10, Ga = 

Similarly, for the right interface, 

Re, = IWrl Re, 

with 
dW 1-4a w' =- - ( I )  = -- 

' dx 2 .  

Here we use the modulus because Wr is negative for a c f. This causes no difficulties 
since, as pointed out in $5, the real part of the roots of (58) and (63) are invariant 
under inversion of the flow direction. 
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FIGURE 11. Comparison of the growth rates for the modes (a )  d+), dl), and ( b )  do), s(-) as given by 
the complete model (-) with the corresponding modes of the  short-wavelength approximations 
for the bounded (---) and unbounded ( .  . . . . )  configurations. The dash-and-dot line indicates the 
long-wavelength, Kelvin-Helmholtz approximation sk?, equation (49). Here Re = 0.1, Ca = 
a=T 

4 '  

In addition, to preserve the value of the dimensional surface tension coefficient (r 
in the film and in the model problems, the value of the parameter r, must be selected 
according to the relation 

In figures 11-13 we consider two representative cases in detail. In  figures 11 and 
12 the continuous lines show the results for the complete problem, while the dashed 
lines and the dotted lines are the results for the viscous bounded and unbounded 
models, respectively. Figures 11 (a) and 12 (a) show the growth rates for the modes 
d+) and s(-) associated with the left-hand interface, while figures 11 (b) and 12(b) are 
for the modes do) and s(-) corresponding to the right interface. It can be seen in 
figures 11 (a) and l2(a)  that the first two modes for Re,, = WiRe give a good 
approximation to the roots s(+) and s(l) of the complete problem, while, from figures 
11 (b)  and 12(b), those corresponding to Re, = IWJ Re are close to the roots do) and 
&). For the viscous stratification model with an unbounded viscous fluid, it is found 
that the approximation is accurate only for short wavelengths. However, for a 
configuration with a finite layer of viscous fluid having a thickness equal to that of 
the air film and bounded by a rigid wall, the agreement extends to the intermediate- 
wavelength region as well. The physical explanation for this result was given in $5  
and hinges on the very small density of the air with respect to the liquid. To check 
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FIGURE 12. As in figure 11, with Re = 10, Cu = lo+, a = h. 

this explanation, we have studied a few cases corresponding to equal densities, 
E = 1. As expected, agreement between the results for the viscosity-stratification 
model and the complete problem then disappears. 

As the parameter a varies between 0 and i, the shear rates Wt and Wr range 
between and 2, and -$  and 1, respectively. For any value of a, Re, = WtRe is larger 
than Re, = IWrlRe. Since, as was pointed out in $ 5 ,  the higher Re, the larger the 
growth rate, the mode s(+) associated with the left-hand interface is always less stable 
than the mode do) corresponding to the right-hand interface. 

The phase velocity for the modes s&% is opposite to that induced by the viscous 
stratification mechanism. A further illustration of the limited validity of the 
Kelvin-Helmholtz mechanism and of the dominant role played by the viscosity 
stratification can therefore be obtained from a consideration of the phase velocities 
of the interfacial waves. Figure 13 (a ,  b)  shows these velocities for the modes s(+) and 
s(l) for the two cases of figures 11 and 12. A similar transition between the two 
controlling mechanisms can be easily discerned in many of the examples of figure 9. 

7. Summary and conclusions 
Our analysis shows that only the two modes s(+) and do) have an unstable range 

of wavelengths. The a(+) mode is always the less stable of the two. For this mode, the 
instability is controlled to varying degrees by the Kelvin-Helmholtz mechanism and 
by the viscosity stratification. Only the latter mechanism seems to play a role for the 
other unstable mode. 



342 A .  M .  Lezzi und A .  Prosperetti 

0.001 0.01 0.1 1 10 

0 

- 20 
0.001 0.01 0.1 1 10 

Wavenumber 

FIGURE 13. Phase velocities of the modes d+). dl) for the rases of (a )  figure 11,  and ( b )  figure 12. -, 
Air film results ; . -. -. , Kelvin-Helmholtz mode sF& ; ---, viscosity stratification model, bounded 
configuration ; . . ' . ' , viscosity stratification model, unbounded configuration. 

When the critical value k,  for the Kelvin-Helmholtz instability falls in the long- 
wavelength region k < the real part of s(+) has two separate maxima. The first 
one peaks at  around the most unstable wavelength for the Kelvin-Helmholtz 
instability. The second one is found for intermediate wavelengths and is due to the 
viscosity stratification. It is almost negligible for small values of the dimensionless 
pressure gradient a but, as a increases, it becomes of comparable magnitude and then 
larger than the first maximum. 

When, by changing the product Re Ca, k, is shifted to intermediate wavelengths, 
the mode s(+) tries to 'interpolate' between the two mechanisms (see figures 11 a and 
12a), until the two maxima merge with a resulting peak somewhere between k - 0.01 
and k - 0.1. This maximum is substantially smaller than that predicted by the 
Kelvin-Helmholtz theory for the same parameter values. 

Also the real part of tlhe mode do) displays a broad maximum in the same range 
of wavenumbers except when a is close to a. This value corresponds to zero shear rate 
a t  the right interface, for which the viscous mechanism is shut off. The maximum 
becomes more and more pronounced as IWrl (defined in (65)) increases, but it never 
grows larger than the maximum of the other mode. For those combinations of the 
parameters for which s(+) exhibits two maxima, the do) peak lies between them. I n  
these cases the air film possesses three distinct preferred disturbances. 

In  addition to the air film problem, we have studied in $5 a situation in which the 
viscous layer is in a state of linear shear flow and one of the boundaries is either 
absent or substituted with a rigid, no-slip one. The results indicate that most of the 
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important features of the complete air film problem are reproduced by these simpler 
models owing to the large density difference between the air and the liquid. 

We have also considered a variant of the air film problem in which the unperturbed 
parabolic velocity profile (7) is retained, but one of the two interfaces is substituted 
by a rigid, no-slip wall. Depending on which interface is replaced, either the pair s(+), 
s(l) or thc pcak do), s(-) disappears, as expected. However, the results for the 
remaining modes are only slightly affected, an indication of their relative 
independence of the nature of the other boundary and the details of the unperturbed 
velocity field. The controlling parameter seems to be the value of the shear a t  the 
interface, 

The picture that we have summarized corresponds to the case in which the fluid 
in the film has a much smaller density than the other fluid, which is the situation of 
interest in the air entrainment problem that has motivated the present investigation. 
From a limited study of cases in which the two fluids have a comparable density, we 
have found that the viscosity stratification model reproduces the complete results 
only in the limit of very short wavelengths, for which the two interfaces are 
essentially uncoupled. 

The results described in this paper show the importance of viscosity in the 
dynamics of the model that we have studied. However, our account of viscous effects 
has been incomplete insofar as the viscosity of the liquid has been neglected. It might 
be objected, therefore, that  the final status of our conclusions remains open to 
question, if only on logical grounds. While we do not have a fully satisfactory answer 
to this objection, we may make the following remarks. Essentially, one can expect 
two type of effects from the viscosity of the liquid. The first one arises from the 
presence of a non-zero shear rate in the liquid. Since, as is clear from ( l ) ,  this shear 
rate is smaller than that in the gas by a factor of the order of pa/pc 4 1, one would 
expect only minor consequences to arise from the neglect of this quantity. The 
second effect is the damping of the instabilities that we have found. If one were to 
estimate this effect by using the damping constant of gravity-capillary waves, 2v, k2 ,  
one would find a negligible correction except for the lowest Reynolds number case 
that we have considered, 0.1, where the maximum growth rate may be predicted to 
decreasc by up to 50 %. The applicability of this estimate is however not obvious in 
thc present case in view of the presence of a non-zero stress applied to the liquid 
surface by the air layer. In  any event, it is found experimentally that the length of 
the air film increases with the viscosity of the liquid (cf. e.g. figure 1 with figure 13 
of Lin & Donnelly 1966). This finding seems to indicate that liquid viscosity will 
dampcn but not suppress the instability. In view of this result, the destabilizing 
mechanisms that have been our primary concern in this study seem therefore to 
remain relevant to the mechanics of the actual physical process. 

As a final point we may apply the previous numerical results to the jet entry 
example of figure 1 .  Since the film thickness is not available, we cannot go beyond 
an estimate of orders of magnitude. The water jet velocity is approximately 0.7 m/s, 
which gives Ca = 1.8 x lop4. With d = 30 pm, the Reynolds number (6) has the value 
1.4 and the timescale used in the non-dimensionalization is pad2/p, x 6 x s. A 
typical order of magnitude of the dimensionless growth rates shown in figures 6 and 
8 is lo-*. With a jet velocity of 0.7 m/s, we thus predict a film length of the order of 
0.4cm, i.e. less than one jet diameter. This is in rough agreement with what is 
observed in the photo. 

The authors are grateful to Dr J. H. Duncan for permitting them to reproduce one 
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videotape showing their remarkable visualization of the entrainment process in a 
laboratory breaking wave. Thanks are also due to  Dr M. K. Smith for several helpful 
discussions and to the referees for some suggestions. This study has been supported 
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Appendix 
We now give some details about the asymptotic analysis of $4. Let us first consider 

the case lim,,,s + 0. If we consider the relative order of magnitude of the terms in 
(25), we find that, in the limit k+O,  k O ( 6 )  = O(Z;’). Therefore, if we expand 6 as 

h ( x , k )  = w o ( x ) + w 1 ( x ) k + w , ( ~ ) k 2 +  ..., 

Zi(x, k )  = u , + k [ u , ( x ) + u , ( x )  k +  ...I, 

(A 1) 

the appropriate expansion for Zi is 

(A 2) 

where u, is a constant. Next, consider the limit of (30) and (31) as k + 0 .  The right- 
hand sides are asymptotic to T su,/Ek, which cannot be balanced by any term on the 
left-hand sides. Hence u, = 0, i.e. Zi = O ( k ) .  Furthermore, from (32 )  and (33) we 
deduce that, to  leading order, {C,r are of order k a t  most. Accordingly, we set 

i C ,  r (k )  = k(a,, ro +at, r l  k +  .. a ) .  

Substituting into (25) to  (27) the previous expansions, together with 

s ( k )  = s o + s , k + s , k 2 +  ..., 

$ ( x , k )  = p o ( x ) + p l ( x )  k + p , ( x ) k 2 +  ... , 
and collecting terms multiplied by the same power of k ,  we obtain a t  the zeroth order 

ul,+iwo = 0, 

P;, = 0, 
wlj-sOwO = 0, 

w , ( T 1 ) = 0 ,  
with boundary conditions 

Reu, , ( f1)  = ~ ~ a ( , ~ ~ .  

The general solution for wo,  

wo = A,exp(~:z)+B,exp(-s~x), (A 9) 

satisfies the boundary conditions wo( T 1) = 0 if and only if sinh (2s: = 0, from which 
the spectrum given in (45) follows. 

For n odd, the solution of (A 5) is 

w?) = A(n)  cos (inn x), 

= A(n)  sin (inn x), 

n = 1 , 3 , 5 , .  . . , 

n = 2,4,6,  . . . . 
while, for n even, 
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Once w, has been evaluated, u,, pa, a,,, and a,, are readily calculated. When n is 
odd they are 

whereas, for n even, 

4~ (n) 

nn: 
up) = -i-sin [inn:(x+ i ) ]  sin [ b n ( x -  i)], 

p p )  = 0, 

a?:, = 0. 

When s vanishes as k + 0 we use the expansion (46). The same expansions (A 1 )  and 
(A 2) with u, = 0 as before hold in this case also. Making use of these results in the 
second of (26), we deduce that 1;‘ = O(k) so that 

i k k )  = P,+k~o(x)+p,(x)k+. . . I ,  

+[,Ah) = at, ro +a,, r l  k +a,, r2 k2 + * * .  7 

with p ,  a constant which, from (30), is seen to vanish. After this preliminary analysis, 
expand Q, and Q, as 

to find the zeroth-order approximation to our problem 

uh+iw, = 0, (A 10) 

Uo” = ph, (A 11) 

so-iRe 
pa(  - 1) = -~ u,( - 1 )  +2[uh( - 1) -iW’( - 1) a,,], 

e 

Re uo( - 1) = (so - i Re) a,,, 

Re uo( 1) = so u,,. 

The general solution of the system (A 10)-(A 12) is 

uo(x)  = -i[AW(x)+Bx]+C, 

wo(x)  = AW’(x) +B, 

pa(%) = --iAW’(x) f D ,  

where A ,  B, C ,  and D are integration constants. By imposing the boundary 
conditions, after some manipulation, we end up with the following linear system : 

[i(s,-iRe)2-eERe W’( - l ) ]  a,+ [is:+eRe W’(l)] a,, = 0, 

- [so - iRe W’(  l ) ]  a,, + [so - i Re W’( l ) ]  a,, = 0, 
(A 18) 

(A 19) 
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which has non-trivial solutions only if its determinant vanishes. This condition yields 
the thrcc roots 

,s(+) O 2  = I [ i (1 - 8 i z r ] R e ,  

sbo) = i Re W‘(1).  

From (A 19), i t  is clear that when so = s~*) ,u>;)  is equal to uX) .  Then 

A(*)  = R“’ = 0 
t-o 

If so = sip), we define 
Re W’( 1)  + ie 

Re W’( - 1)- ie‘ 
ro = 

Then, from (A 17), it follows that 

and 

Note that, for a = t ,  W‘(1) vanishes together with a>:), ur), wr) and pio). 
The first-order correction to do) in (48), 

e + i2a Re s(o) = (1-16a2) -+ [fi (1+16a2)t le- i8ae 

has been calculated by determining and solving the first-order problem for the 
unknown sl, u l ,  w l ,  pl, and at, r l ,  for the case so = she). The calculations have bcen 
carried out by using the algebraic manipulation package MACSYMA, a trademark of 
Symbolics, Inc. 
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